Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(4): 1082-1099, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625038

RESUMO

The 26S proteasome is the major protein degradation machinery in cells. Cancer cells use the proteasome to modulate gene expression networks that promote tumor growth. Proteasome inhibitors have emerged as effective cancer therapeutics, but how they work mechanistically remains unclear. Here, using integrative genomic analysis, we discovered unexpected reprogramming of the chromatin landscape and RNA polymerase II (RNAPII) transcription initiation in breast cancer cells treated with the proteasome inhibitor MG132. The cells acquired dynamic changes in chromatin accessibility at specific genomic loci termed differentially open chromatin regions (DOCR). DOCRs with decreased accessibility were promoter proximal and exhibited unique chromatin architecture associated with divergent RNAPII transcription. Conversely, DOCRs with increased accessibility were primarily distal to transcription start sites and enriched in oncogenic superenhancers predominantly accessible in non-basal breast tumor subtypes. These findings describe the mechanisms by which the proteasome modulates the expression of gene networks intrinsic to breast cancer biology. SIGNIFICANCE: Our study provides a strong basis for understanding the mechanisms by which proteasome inhibitors exert anticancer effects. We find open chromatin regions that change during proteasome inhibition, are typically accessible in non-basal breast cancers.


Assuntos
Cromatina , Neoplasias , Cromatina/genética , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/farmacologia , Proteólise , Genômica
2.
Sci Adv ; 10(9): eadj5107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427725

RESUMO

Cell fate decisions are achieved with gene expression changes driven by lineage-specific transcription factors (TFs). These TFs depend on chromatin remodelers including the Brahma-related gene 1 (BRG1)-associated factor (BAF) complex to activate target genes. BAF complex subunits are essential for development and frequently mutated in cancer. Thus, interrogating how BAF complexes contribute to cell fate decisions is critical for human health. We examined the requirement for the catalytic BAF subunit BRG1 in neural progenitor cell (NPC) specification from human embryonic stem cells. During the earliest stages of differentiation, BRG1 was required to establish chromatin accessibility at neuroectoderm-specific enhancers. Depletion of BRG1 dorsalized NPCs and promoted precocious neural crest specification and enhanced neuronal differentiation. These findings demonstrate that BRG1 mediates NPC specification by ensuring proper expression of lineage-specific TFs and appropriate activation of their transcriptional programs.


Assuntos
Cromatina , Placa Neural , Humanos , Cromatina/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Placa Neural/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
3.
Geroscience ; 46(2): 2425-2439, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37985642

RESUMO

Although aging has been investigated extensively at the organismal and cellular level, the morphological changes that individual cells undergo along their replicative lifespan have not been precisely quantified. Here, we present the results of a readily accessible machine learning-based pipeline that uses standard fluorescence microscope and open access software to quantify the minute morphological changes that human fibroblasts undergo during their replicative lifespan in culture. Applying this pipeline in a widely used fibroblast cell line (IMR-90), we find that advanced replicative age robustly increases (+28-79%) cell surface area, perimeter, number and total length of pseudopodia, and nuclear surface area, while decreasing cell circularity, with phenotypic changes largely occurring as replicative senescence is reached. These senescence-related morphological changes are recapitulated, albeit to a variable extent, in primary dermal fibroblasts derived from human donors of different ancestry, age, and sex groups. By performing integrative analysis of single-cell morphology, our pipeline further classifies senescent-like cells and quantifies how their numbers increase with replicative senescence in IMR-90 cells and in dermal fibroblasts across all tested donors. These findings provide quantitative insights into replicative senescence, while demonstrating applicability of a readily accessible computational pipeline for high-throughput cell phenotyping in aging research.


Assuntos
Envelhecimento , Senescência Celular , Humanos , Células Cultivadas , Fibroblastos
4.
bioRxiv ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37873209

RESUMO

The transformation of fibroblasts into epithelial cells is critical for iPSC reprogramming. In this report, we describe studies with PFI-3, a small molecule inhibitor that specifically targets the bromodomains of SMARCA2/4 and PBRM1 subunit of SWI/SNF complex, as an enhancer of iPSC reprogramming efficiency. Our findings revealed that PFI-3 induces cellular plasticity in multiple human dermal fibroblasts, leading to a mesenchymal-epithelial transition (MET) during iPSC formation. This transition was characterized by the upregulation of E-cadherin expression, a key protein involved in epithelial cell adhesion. Additionally, we identified COL11A1 as a reprogramming barrier and demonstrated COL11A1 knockdown increased reprogramming efficiency. Notably, we found that PFI-3 significantly reduced the expression of numerous extracellular matrix (ECM) genes, particularly those involved in collagen assembly. Our research provides key insights into the early stages of iPSC reprogramming, highlighting the crucial role of ECM changes and cellular plasticity in this process.

5.
Life Sci Alliance ; 6(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801810

RESUMO

The SWI/SNF complex remodels chromatin in an ATP-dependent manner through the subunits BRG1 and BRM. Chromatin remodeling alters nucleosome structure to change gene expression; however, aberrant remodeling can result in cancer. We identified BCL7 proteins as critical SWI/SNF members that drive BRG1-dependent gene expression changes. BCL7s have been implicated in B-cell lymphoma, but characterization of their functional role within the SWI/SNF complex has been limited. This study implicates their function alongside BRG1 to drive large-scale changes in gene expression. Mechanistically, the BCL7 proteins bind to the HSA domain of BRG1 and require this domain for binding to chromatin. BRG1 proteins without the HSA domain fail to interact with the BCL7 proteins and have severely reduced chromatin remodeling activity. These results link the HSA domain and the formation of a functional SWI/SNF remodeling complex through the interaction with BCL7 proteins. These data highlight the importance of correct formation of the SWI/SNF complex to drive critical biological functions, as losses of individual accessory members or protein domains can cause loss of complex function.


Assuntos
Proteínas Cromossômicas não Histona , Neoplasias , Humanos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Montagem e Desmontagem da Cromatina/genética , Cromatina , Expressão Gênica
6.
iScience ; 25(9): 104960, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36065188

RESUMO

Chronic environmental stress can profoundly impact cell and body function. Although the underlying mechanisms are poorly understood, epigenetics has emerged as a key link between environment and health. The genomic effects of stress are thought to be mediated by the action of glucocorticoid stress hormones, primarily cortisol in humans, which act via the glucocorticoid receptor (GR). To dissect how chronic stress-driven GR activation influences epigenetic and cell states, human fibroblasts underwent prolonged exposure to physiological stress levels of cortisol and/or a selective GR antagonist. Cortisol was found to drive robust changes in cell proliferation, migration, and morphology, which were abrogated by concomitant GR blockade. The GR-driven cell phenotypes were accompanied by widespread, yet genomic context-dependent, changes in DNA methylation and mRNA expression, including gene loci with known roles in cell proliferation and migration. These findings provide insights into how chronic stress-driven functional epigenomic patterns become established to shape key cell phenotypes.

7.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35192692

RESUMO

A major topic of debate in developmental biology centers on whether development is continuous, discontinuous, or a mixture of both. Pseudo-time trajectory models, optimal for visualizing cellular progression, model cell transitions as continuous state manifolds and do not explicitly model real-time, complex, heterogeneous systems and are challenging for benchmarking with temporal models. We present a data-driven framework that addresses these limitations with temporal single-cell data collected at discrete time points as inputs and a mixture of dependent minimum spanning trees (MSTs) as outputs, denoted as dynamic spanning forest mixtures (DSFMix). DSFMix uses decision-tree models to select genes that account for variations in multimodality, skewness and time. The genes are subsequently used to build the forest using tree agglomerative hierarchical clustering and dynamic branch cutting. We first motivate the use of forest-based algorithms compared to single-tree approaches for visualizing and characterizing developmental processes. We next benchmark DSFMix to pseudo-time and temporal approaches in terms of feature selection, time correlation, and network similarity. Finally, we demonstrate how DSFMix can be used to visualize, compare and characterize complex relationships during biological processes such as epithelial-mesenchymal transition, spermatogenesis, stem cell pluripotency, early transcriptional response from hormones and immune response to coronavirus disease. Our results indicate that the expression of genes during normal development exhibits a high proportion of non-uniformly distributed profiles that are mostly right-skewed and multimodal; the latter being a characteristic of major steady states during development. Our study also identifies and validates gene signatures driving complex dynamic processes during somatic or germline differentiation.


Assuntos
Benchmarking , Modelos Teóricos , Análise de Célula Única/métodos , Algoritmos , Animais , Microambiente Celular , Análise de Dados , Árvores de Decisões , Perfilação da Expressão Gênica/métodos , Humanos , Espermatogênese
8.
Mol Cell ; 82(4): 803-815.e5, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35077705

RESUMO

The hormone-stimulated glucocorticoid receptor (GR) modulates transcription by interacting with thousands of enhancers and GR binding sites (GBSs) throughout the genome. Here, we examined the effects of GR binding on enhancer dynamics and investigated the contributions of individual GBSs to the hormone response. Hormone treatment resulted in genome-wide reorganization of the enhancer landscape in breast cancer cells. Upstream of the DDIT4 oncogene, GR bound to four sites constituting a hormone-dependent super enhancer. Three GBSs were required as hormone-dependent enhancers that differentially promoted histone acetylation, transcription frequency, and burst size. Conversely, the fourth site suppressed transcription and hormone treatment alleviated this suppression. GR binding within the super enhancer promoted a loop-switching mechanism that allowed interaction of the DDIT4 TSS with the active GBSs. The unique functions of each GR binding site contribute to hormone-induced transcriptional heterogeneity and demonstrate the potential for targeted modulation of oncogene expression.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Dexametasona/farmacologia , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptores de Glucocorticoides/agonistas , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
9.
Cell ; 184(12): 3075-3079, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34115967

RESUMO

NIH has acknowledged and committed to ending structural racism. The framework for NIH's approach, summarized here, includes understanding barriers; developing robust health disparities/equity research; improving its internal culture; being transparent and accountable; and changing the extramural ecosystem so that diversity, equity, and inclusion are reflected in funded research and the biomedical workforce.


Assuntos
Pesquisa Biomédica , National Institutes of Health (U.S.) , Racismo Sistêmico , Diversidade Cultural , Humanos , Apoio à Pesquisa como Assunto/economia , Estados Unidos
10.
Epigenetics ; 16(3): 289-299, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32660355

RESUMO

Studies have suggested that abrogated expression of detoxification enzymes, UGT2B15 and UGT2B17, are associated with prostate tumour risk and progression. We investigated the role of EGF on the expression of these enzymes since it interacts with signalling pathways to also affect prostate tumour progression and is additionally associated with decreased DNA methylation. The expression of UGT2B15, UGT2B17, de novo methyltransferases, DNMT3A and DNMT3B was assessed in prostate cancer cells (LNCaP) treated with EGF, an EGFR inhibitor PD16893, and the methyltransferase inhibitor, 5-azacytidine, respectively. The results showed that EGF treatment decreased levels of expression of all four genes and that their expression was reversed by PD16893. Treatment with 5-azacytidine, markedly decreased expression of UGT2B15 and UGT2B17 over 85% as well as significantly decreased expression of DNMT3B, but not the expression of DNMT3A. DNMT3B siRNA treated LNCaP cells had decreased expression of UGT2B15 and UGT2B17, while DNMT3A siRNA treated cells had only moderately decreased UGT2B15 expression. Treatment with DNMT methyltransferase inhibitor, RG108, significantly decreased UGT2B17 expression. Additionally, methylation differences between prostate cancer samples and benign prostate samples from an Illumina 450K Methylation Array study were assessed. The results taken together suggest that hypomethylation of the UGT2B15 and UGT2B17 genes contributes to increased risk of prostate cancer and may provide a putative biomarker or epigenetic target for chemotherapeutics. Mechanistic studies are warranted to determine the role of the methylation marks in prostate cancer.


Assuntos
Metilação de DNA , Glucuronosiltransferase , Neoplasias da Próstata , Regulação Neoplásica da Expressão Gênica , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/genética , Neoplasias da Próstata/genética
11.
Sci Adv ; 6(47)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33219026

RESUMO

Induced pluripotent stem cells (iPSCs) can be derived from differentiated cells, enabling the generation of personalized disease models by differentiating patient-derived iPSCs into disease-relevant cell lines. While genetic variability between different iPSC lines affects differentiation potential, how this variability in somatic cells affects pluripotent potential is less understood. We generated and compared transcriptomic data from 72 dermal fibroblast-iPSC pairs with consistent variation in reprogramming efficiency. By considering equal numbers of samples from self-reported African Americans and White Americans, we identified both ancestry-dependent and ancestry-independent transcripts associated with reprogramming efficiency, suggesting that transcriptomic heterogeneity can substantially affect reprogramming. Moreover, reprogramming efficiency-associated genes are involved in diverse dynamic biological processes, including cancer and wound healing, and are predictive of 5-year breast cancer survival in an independent cohort. Candidate genes may provide insight into mechanisms of ancestry-dependent regulation of cell fate transitions and motivate additional studies for improvement of reprogramming.


Assuntos
Fenômenos Biológicos , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/genética , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transcriptoma
12.
Commun Biol ; 3(1): 126, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170217

RESUMO

Steroid hormone receptors such as the Glucocorticoid Receptor (GR) mediate transcriptional responses to hormones and are frequently targeted in the treatment of human diseases. Experiments using bulk populations of cells have provided a detailed picture of the global transcriptional hormone response but are unable to interrogate cell-to-cell transcriptional heterogeneity. To examine the glucocorticoid response in individual cells, we performed single cell RNA sequencing (scRNAseq) in a human breast cancer cell line. The transcriptional response to hormone was robustly detected in individual cells and scRNAseq provided additional statistical power to identify over 100 GR-regulated genes that were not detected in bulk RNAseq. scRNAseq revealed striking cell-to-cell variability in the hormone response. On average, individual hormone-treated cells showed a response at only 30% of the total set of GR target genes. Understanding the basis of this heterogeneity will be critical for the development of more precise models of steroid hormone signaling.


Assuntos
Neoplasias da Mama/genética , Dexametasona/farmacologia , Heterogeneidade Genética/efeitos dos fármacos , Glucocorticoides/farmacologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Glucocorticoides/genética , Transcrição Gênica/efeitos dos fármacos
13.
Curr Opin Endocr Metab Res ; 15: 8-14, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35128145

RESUMO

Breast cancers are a diverse group of diseases and are often characterized by their expression of receptors for hormones such as estrogen and progesterone. Recently another steroid hormone receptor, the glucocorticoid receptor (GR) has been shown to be a key player in breast cancer progression, metastasis, and treatment. These receptors bind to chromatin to elicit transcriptional changes within cells, which are often inhibited by the structure of chromatin itself. Chromatin remodeling proteins, such as Brahma-related gene 1 (BRG1), function to overcome this physical inhibition of transcription factor function and have been linked to many cancers including breast cancer. Recent efforts to understand the interactions of BRG1 and GR, including genomic and single cell analyses, within breast cancers may give insight into personalized medicine and other potential treatments.

14.
J Biol Chem ; 295(5): 1271-1287, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31806706

RESUMO

Proteasome activity is required for diverse cellular processes, including transcriptional and epigenetic regulation. However, inhibiting proteasome activity can lead to an increase in transcriptional output that is correlated with enriched levels of trimethyl H3K4 and phosphorylated forms of RNA polymerase (Pol) II at the promoter and gene body. Here, we perform gene expression analysis and ChIP followed by sequencing (ChIP-seq) in MCF-7 breast cancer cells treated with the proteasome inhibitor MG132, and we further explore genome-wide effects of proteasome inhibition on the chromatin state and RNA Pol II transcription. Analysis of gene expression programs and chromatin architecture reveals that chemically inhibiting proteasome activity creates a distinct chromatin state, defined by spreading of the H3K4me3 mark into the gene bodies of differentially-expressed genes. The distinct H3K4me3 chromatin profile and hyperacetylated nucleosomes at transcription start sites establish a chromatin landscape that facilitates recruitment of Ser-5- and Ser-2-phosphorylated RNA Pol II. Subsequent transcriptional events result in diverse gene expression changes. Alterations of H3K36me3 levels in the gene body reflect productive RNA Pol II elongation of transcripts of genes that are induced, underscoring the requirement for proteasome activity at multiple phases of the transcriptional cycle. Finally, by integrating genomics data and pathway analysis, we find that the differential effects of proteasome inhibition on the chromatin state modulate genes that are fundamental for cancer cell survival. Together, our results uncover underappreciated downstream effects of proteasome inhibitors that may underlie targeting of distinct chromatin states and key steps of RNA Pol II-mediated transcription in cancer cells.


Assuntos
Cromatina/metabolismo , Epigênese Genética/efeitos dos fármacos , Leupeptinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , RNA Polimerase II/metabolismo , Transcrição Gênica/efeitos dos fármacos , Acetilação , Cromatina/efeitos dos fármacos , Cromatina/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Regulação Neoplásica da Expressão Gênica/genética , Histonas/metabolismo , Humanos , Células MCF-7 , Nucleossomos/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/genética , Domínios Proteicos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítio de Iniciação de Transcrição/efeitos dos fármacos
15.
Elife ; 82019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31033435

RESUMO

The SWI/SNF complex is a critical regulator of pluripotency in human embryonic stem cells (hESCs), and individual subunits have varied and specific roles during development and in diseases. The core subunit SMARCB1 is required for early embryonic survival, and mutations can give rise to atypical teratoid/rhabdoid tumors (AT/RTs) in the pediatric central nervous system. We report that in contrast to other studied systems, SMARCB1 represses bivalent genes in hESCs and antagonizes chromatin accessibility at super-enhancers. Moreover, and consistent with its established role as a CNS tumor suppressor, we find that SMARCB1 is essential for neural induction but dispensable for mesodermal or endodermal differentiation. Mechanistically, we demonstrate that SMARCB1 is essential for hESC super-enhancer silencing in neural differentiation conditions. This genomic assessment of hESC chromatin regulation by SMARCB1 reveals a novel positive regulatory function at super-enhancers and a unique lineage-specific role in regulating hESC differentiation.


Assuntos
Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos/genética , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Diferenciação Celular/genética , Criança , Cromatina/genética , Endoderma , Técnicas de Silenciamento de Genes , Genes Supressores de Tumor , Humanos , Mesoderma , Mutação/genética , Tumor Rabdoide/genética
16.
Stem Cells ; 36(11): 1697-1708, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30152570

RESUMO

Epigenetic enzymes regulate higher-order chromatin architecture and cell-type specific gene expression. The ATPase BRG1 and the SWI/SNF chromatin remodeling complex are epigenetic enzymes that regulate chromatin accessibility during steady and transitional cell states. Experiments in mice show that the loss of BRG1 inhibits cellular reprogramming, while studies using human cells demonstrate that the overexpression of BRG1 enhances reprogramming. We hypothesized that the variation of SWI/SNF subunit expression in the human population would contribute to variability in the efficiency of induced pluripotent stem cells (iPSC) reprogramming. To examine the impact of an individual's sex, ancestry, and age on iPSC reprogramming, we created a novel sex and ancestry balanced cohort of 240 iPSC lines derived from human dermal fibroblasts (DF) from 80 heathy donors. We methodically assessed the reprogramming efficiency of each DF line and then quantified the individual and demographic-specific variations in SWI/SNF chromatin remodeling proteins and mRNA expression. We identified BRG1, BAF155, and BAF60a expression as strongly correlating with iPSC reprogramming efficiency. Additionally, we discovered that high efficiency iPSC reprograming is negatively correlated with donor age, positively correlated with African American descent, and uncorrelated with donor sex. These results show the variations in chromatin remodeling protein expression have a strong impact on iPSC reprogramming. Additionally, our cohort is unique in its large size, diversity, and focus on healthy donors. Consequently, this cohort can be a vital tool for researchers seeking to validate observational results from human population studies and perform detailed mechanistic studies in a controlled cell culture environment. Stem Cells 2018;36:1697-1708.


Assuntos
Reprogramação Celular/genética , Epigenômica/métodos , Expressão Gênica/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
17.
Elife ; 72018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29792595

RESUMO

The Glucocorticoid Receptor (GR) alters transcriptional activity in response to hormones by interacting with chromatin at GR binding sites (GBSs) throughout the genome. Our work in human breast cancer cells identifies three classes of GBSs with distinct epigenetic characteristics and reveals that BRG1 interacts with GBSs prior to hormone exposure. The GBSs pre-occupied by BRG1 are more accessible and transcriptionally active than other GBSs. BRG1 is required for a proper and robust transcriptional hormone response and knockdown of BRG1 blocks recruitment of the pioneer factors FOXA1 and GATA3 to GBSs. Finally, GR interaction with FOXA1 and GATA3 binding sites was restricted to sites pre-bound by BRG1. These findings demonstrate that BRG1 establishes specialized chromatin environments that define multiple classes of GBS. This in turn predicts that GR and other transcriptional activators function via multiple distinct chromatin-based mechanisms to modulate the transcriptional response.


Assuntos
Cromatina/metabolismo , DNA Helicases/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Glucocorticoides/metabolismo , Humanos , Ligação Proteica , Transdução de Sinais
18.
Oncotarget ; 8(33): 54925-54938, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903392

RESUMO

Lymphatic vasculature is an important part of the cardiovascular system with multiple functions, including regulation of the return of interstitial fluid (lymph) to the bloodstream, immune responses, and fat absorption. Consequently, lymphatic vasculature defects are involved in many pathological processes, including tumor metastasis and lymphedema. BRG1 is an important player in the developmental window when the lymphatic system is initiated. In the current study, we used tamoxifen inducible Rosa26CreERT2-BRG1floxed/floxed mice that allowed temporal analysis of the impact of BRG1 inactivation in the embryo. The BRG1floxed/floxed/Cre-TM embryos exhibited edema and hemorrhage at embryonic day-13 and began to die. BRG1 deficient embryos had abnormal lymphatic sac linings with fewer LYVE1 positive lymphatic endothelial cells. Indeed, loss of BRG1 attenuated expression of a subset of lymphatic genes in-vivo. Furthermore, BRG1 binds at the promoters of COUP-TFII and LYVE1, suggesting that BRG1 modulates expression of these genes in the developing embryos. Conversely, re-expression of BRG1 in cells lacking endogenous BRG1 resulted in induction of lymphatic gene expression in-vitro, suggesting that BRG1 was both required and sufficient for lymphatic gene expression. These studies provide important insights into intrinsic regulation of BRG1-mediated lymphatic-gene expression, and further an understanding of lymphatic gene dysregulation in lymphedema and other disease conditions.

20.
Cell Commun Signal ; 14(1): 18, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27582276

RESUMO

BACKGROUND: The phytoestrogen, genistein at low doses nongenomically activates mitogen-activated protein kinase p44/42 (MAPKp44/42) via estrogen receptor alpha (ERα) leading to proliferation of human uterine leiomyoma cells. In this study, we evaluated if MAPKp44/42 could activate downstream effectors such as mitogen- and stress-activated protein kinase 1 (MSK1), which could then epigenetically modify histone H3 by phosphorylation following a low dose (1 µg/ml) of genistein. RESULTS: Using hormone-responsive immortalized human uterine leiomyoma (ht-UtLM) cells, we found that genistein activated MAPKp44/42 and MSK1, and also increased phosphorylation of histone H3 at serine10 (H3S10ph) in ht-UtLM cells. Colocalization of phosphorylated MSK1 and H3S10ph was evident by confocal microscopy in ht-UtLM cells (r = 0.8533). Phosphorylation of both MSK1and H3S10ph was abrogated by PD98059 (PD), a MEK1 kinase inhibitor, thereby supporting genistein's activation of MSK1 and Histone H3 was downstream of MAPKp44/42. In proliferative (estrogenic) phase human uterine fibroid tissues, phosphorylated MSK1 and H3S10ph showed increased immunoexpression compared to normal myometrial tissues, similar to results observed in in vitro studies following low-dose genistein administration. Real-time RT-PCR arrays showed induction of growth-related transcription factor genes, EGR1, Elk1, ID1, and MYB (cMyb) with confirmation by western blot, downstream of MAPK in response to low-dose genistein in ht-UtLM cells. Additionally, genistein induced associations of promoter regions of the above transcription factors with H3S10ph as evidenced by Chromatin Immunoprecipitation (ChIP) assays, which were inhibited by PD. Therefore, genistein epigenetically modified histone H3 by phosphorylation of serine 10, which was regulated by MSK1 and MAPK activation. CONCLUSION: Histone H3 phosphorylation possibly represents a mechanism whereby increased transcriptional activation occurs following low-dose genistein exposure.


Assuntos
Antineoplásicos/farmacologia , Epigênese Genética , Genisteína/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Regiões Promotoras Genéticas , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Histonas/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...